Intramolecular Hydrogen Atom Transfer Reactions of ω -Formylalkyl **Radicals in Vapor and Liquid Phases**

J. D. Druliner,* F. G. Kitson, M. A. Rudat, and C. A. Tolman

Central Research and Development Department, E. I. du Pont de Nemours and Company, Experimental

Station, Wilmington, Delaware 19898

Received April 25, 1983

A series of ω -formyl- (-CHO and -CDO) -n-butyl, -n-pentyl, and -n-hexyl radicals (4) has been generated in vapor and solution phases. In the vapor phase, intramolecular aldehyde H- (or D-) atom transfer is a facile process proceeding through 6- or 7-membered transition states. In solution phase, intramolecular aldehydic H-atom transfer occurs to an extent of 74% via a 6-membered transition state but to only 29% or 38% via 7- or 8-membered transition states, respectively. Indirect evidence from both vapor- and solution-phase experiments indicates that intramolecular α -H atom abstraction in ω -formyl radicals (4) occurs to about 10% in competition with aldehydic H-atom abstraction via 6- and 7-membered transition states but not at all via a 5-membered transition state.

There have been numerous studies of the chemistry of alkyloxyl and cycloalkyloxyl radicals.¹⁻⁵ At temperatures above about 150 °C, β -scission becomes competitive with intermolecular disproportionation and H-atom transfer processes, giving rise to ω -formyl- or ω -ketoalkyl radicals (4) (Scheme I). Intramolecular α -H-atom abstraction in the case of ω -keto radical 4 (n = 5, $R = CH_3$) has been shown to give dimer 6 $(n = 5, R = CH_3)$ in 30% yield.⁶ The extent to which analogous ω -formyl radicals also undergo α -H-atom abstraction has not been established. α -H-atom abstraction in ω -formyl radical 4 (n = 5, R =H) was found not to occur in studies of Pd(II) catalyzed decomposition of a tetradeuterated cyclohexyl hydroperoxide.⁷ However, whether or not ω -H (or D) atom transfer occurred in the absence of Pd(II) was not discussed. Abstraction of aldehyde H atoms in ω -formyl radicals 4 (n = 3, 4, 5), to give acyl radicals 8 (n = 3, 4, 5), was reported in solution phase studies of the attack of t-BuO· radicals on cyclic ethers.⁸ A 41% yield of 4-dodecanone was iso-

lated from the reaction of tetrahydrofuran with 1-octene. Yields of ketone products from the corresponding 4- and 6-membered ethers were not reported.

We now report results of thermolysis studies of recently prepared dicycloalkyl peroxides⁹ 9 (n = 4, 5, 6; R = H or D) which were decomposed in vapor and solution phases to generate corresponding cycloalkyloxyl radicals 1 and ω -formylalkyl radicals 4. The purpose of the studies was

$$(H_2)_n$$
 $(H_2)_n \rightarrow 1 \rightarrow 4$

to determine the extents of intramolecular α -H and al-

- (2) Takagi, H.; Washida, N.; Bandow, H.; Okuda, M. J. Phys. Chem. 1981, 85, 2701
- (3) Gray, P.; Williams, A. Trans. Faraday Soc. 1959, 55, 760.
 (4) Howard, J. A., Williams, G. H., Ed. "Advances in Free-Radical Chemistry"; Academic Press: New York, 1972; Vol. IV, pp 49–173.
 (5) Kochi, Jay K., Ed. "Free Radicals"; Wiley: New York, 1973; Vol.
- II, pp 665-710. (6) Milas, N. A.; Perry, L. H. J. Am. Chem. Soc. 1946, 68, 1938
- (7) Formanels, K.; Aune, J. P.; Jouffret, M.; Metzger, J. Nouv. J. Chim.
- 1979, 3, 311.
 (8) Wallace, T. J.; Gritter, R. J. J. Org. Chem. 1961, 26, 5256. (9) Druliner, J. D. Synth. Commun. 1983, 13(2), 115.

dehydric H abstraction processes and the relative dependence of each on carbon atom chain length.

Results and Discussion

Thermal decompositions of solutions of 1-12 weight % dicycloalkyl peroxides 9 were done in Freon 113 (Du Pont) fluorocarbon, dodecane, or methylcyclohexane- d_{14} solvents in sealed glass or stainless steel tubes at 160 °C. Product identification was made by GC/MS. Initial experiments were done with undeuterated peroxides to determine the distribution of products obtained under various conditions. The perdominant reaction products were ketone 3 and alcohols 2, accounting for >90% of the starting dialkyl

$$1 \xrightarrow{O_2} 3 + HO_2$$

peroxides 9. The ratios of 3/2 depend on O_2 pressure. For example, 9 (n = 5) was thermolyzed in Freon 113 at 160 °C under N₂ and under 500 psi O₂. The resulting 3/2ratios were 1/4 (N₂) and 17/1 (O₂), providing support for direct oxidation of cycloalkyloxyl radicals to ketones. Related examples of vapor-phase oxidations of *n*-butyloxy radicals by O_2 to give *n*-butyraldehyde are known.¹⁰ High O_2 pressures (500 psi) also resulted in efficient O_2 trapping of radicals to give mainly hydroxy acids and dibasic acids, with only minor amounts of monobasic acids. The presence of even atmospheric air pressure in place of nitrogen

⁽¹⁾ Gray, P.; Williams, A. J. Chem. Soc. 1961, 2620.

^{(10) (}a) Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. P. J. Phys. Chem. 1981, 85, 2698. (b) Carter, W. P. L.; Darnall, K. R.; Lloyd, A. C.; Winer, A. M.; Pitts, J. N., Jr. Chem. Phys. Lett. 1976, 42, 22.

Table I. Amounts of Different Hydrocarbon Products Obtained from Thermolysis of Dicycloalkyl Peroxides at 160 °C in Solution

			hydrocarbon product ratios, % ^a				
compd	solvent	atm	<i>n</i> -propane	<i>n</i> -butane	<i>n</i> -pentane	<i>n</i> -hexane	total yield ^b
9 $(n = 4)$	CD ₃ C ₆ D ₁₁	air	0	100			2
9(n = 4)	$CD_3C_6D_{11}$	air	0	100			
$9 \cdot d_{2} (n = 4)$	$C_{12}H_{26}$	Ν,	0	100			
9(n=5)	$CD_3C_6D_{11}$	air		2	98		
9 $(n = 5)$	$CD_3C_6D_{11}$	Ν,		13	87		22
9 $(n = 5)$	$C_{12}H_{26}$	air		11	89		
$9 \cdot d_{2} (n = 5)$	C ₁₂ H ₂	N ₂		trace	100		
9(n=6)	$\mathbf{C}\mathbf{D}_{\mathbf{A}}\mathbf{C}_{\mathbf{A}}\mathbf{D}_{\mathbf{A}}$	air			8	92	7
$9 - d_2 (n = 6)$	$C_{12}H_{26}$	N_2			6	94	27

^a Product ratios determined by comparison of capillary column GC peak area percentage ratios. ^b Approximate yields of butane, pentane, and hexane were determined in those experiments in which area percentages of solvent peaks were determined.

Table II. Percentages of Deuterium Enrichment in $H(CH_2)_n$ H Products from Thermolysis of d_0 and d_2 Dicycloalkyl Peroxides at 160 °C in Solution

		$H(CH_2)_n D/H(CH_2)_n H$ ratio	
compd	solvent	air	N 2
$\begin{array}{c} \textbf{9-d}_{0} (n=4) \\ \textbf{9-d}_{0} (n=5) \\ \textbf{9-d}_{0} (n=6) \\ \textbf{9-d}_{2} (n=4) \\ \textbf{9-d}_{2} (n=5) \\ \textbf{9-d}_{2} (n=6) \end{array}$	$\begin{array}{c} CD_{3}C_{6}D_{11}\\ CD_{3}C_{6}D_{11}\\ CD_{3}C_{6}D_{11}\\ C_{12}H_{26}\\ C_{12}H_{26}\\ C_{12}H_{26}\\ C_{12}H_{26}\\ \end{array}$	15/85 29/71 7/93	12/88 19/81 8/92 74/26 29/71 38/62

significantly reduced the yields of hydrocarbons obtained (Table I). Thus, all thermolyses of deuterated peroxides were done under an atmosphere of N_2 or atmospheric air pressure to minimize O2 trapping of alkyl radicals in competition with intramolecular H-atom transfer processes. Because the *n*-alkanes were much better resolved by capillary GC than were the aldehydes or acids, they were chosen for quantification of deuterium isotopic enrichment. The combined amounts of $H-(CH_2)_n-H$ plus $H-(CH_2)_n-D$ and $H(CH_2)_{n-1}-H$ plus $H-(CH_2)_{n-1}-D$ products from 9 (n = 4, 5, 6; R = H or D) are listed in Table I and show that alkanes resulting from loss of one carbon (-CO) predominate over alkanes formed from loss of two carbons by about a factor of 10. With 9 (n = 4) only butane is formed. The absence of any detectable propane suggests that the lower alkanes are not formed by oxidation of $H-(CH_2)_n$ radicals but may be derived primarily from intramolecular α -H atom abstraction processes. Rearrangement of 4 (n = 4) to 5, proceeding through a 5membered transition state, would be energetically less favorable than analogous rearrangements with n = 5 or 6 which involve 6- and 7-membered transition states, respectively.¹¹

Percentages of deuterium enrichment in $H(CH_2)_n H$ products were determined, both for decomposition of 9 (n = 4, 5, 6) in $CD_3C_6D_{11}$ and for 9-d₂ (n = 4, 5, 6) in $C_{12}H_{26}$ (Table II). The results for the d_0 compounds show no major differences in the amounts of deuterium enrichment under N₂ or air. These data also provide a measure of the reproducibility of the measurements $(\pm 10\%)$. The extent of deuterium atom abstraction from CD₃C₆D₁₁ solvent was not strongly dependent on chain length of the ω -formylalkyl radicals 4. The upper limit on the amount of aldehydic D-atom transfer which occurred via an intramolecular process in 4-d (n = 4) was moderately large (74%). corresponding to a favorable 6-membered transition state.

(11) Kochi, Jay K., Ed. "Free Radicals"; Wiley: New York, 1973; Vol. I, pp 378-382.

Table III. Extents of Different H Atom Reaction Pathways for ω -Formyl Radicals in Solution at 160 °C under N.

··	H atom abstraction reaction pathway, %					
$(CH_2)_n CHO$	intramolecular	from	from other			
	aldehydic ^a	solvent ^a	C-H sources ^b			
n = 4 $n = 5$ $n = 6$	74	12	14			
	29	19	52			
	38	8	54			

^{*a*} Data from Table II. ^{*b*} Calculated as 100% – [% intramolecular aldehydic H atom abstraction + % H atom abstraction from solvent.

The corresponding amounts of intramolecular aldehydic D-atom transfer for 4-d (n = 5 and 6) were about half of that. Only upper limits can be set since small amounts of intermolecular H-atom abstraction could also have occurred in solution. Studies on the effect of chain length on intramolecular H-atom abstraction have been reported in solution phase studies of *n*-alkyloxyl radicals generated by alkyl hypochlorite decomposition at 0 $^{\circ}C.^{12}$ A 6membered transition state was favored over a 7-membered one by a factor of about 16. However, no rearrangements of the alkyloxyl radicals via 8-membered transition states were observed. The rearrangement of ω -formyl radical 4-d (n = 6) involving an 8-membered transition state for intramolecular abstraction could be facilitated by the lower aldehydic C-H bond energy of 88 kcal/mol compared with a secondary C-H bond energy of 94 kcal/mol.¹³ The percentages of various pathways for H atom abstraction by radicals 4 (n = 4, 5, 6) which occurred in solution phase reactions at 160 °C, are shown in Table III. About half of the H-atom abstraction with n = 5 and 6 occurred via intermolecular processes compared with only about 14% in the case of n = 4, which gives the most favorable transition state for intramolecular H-atom transfer.

Vapor-Phase Thermolyses. Vapor phase thermolyses were done by injecting micro liter amounts of neat dialkyl peroxides 9 (n = 4 and 5) into a glass reservoir heated at 80-110 °C from which the compounds could vaporize through a glass capillary into the ion source of a mass spectrometer. The ion source was heated to 200 °C to decompose the dialkyl peroxides to form radicals. The ion source also contained about 0.3 torr of N₂ pressure and a small amount of tetracyanoquinodimethane (TCNQ) for trapping and analyzing carbon-centered radicals.¹⁴ The same techniques were not successful in the case of di-

⁽¹²⁾ Walling, C. J. Am. Chem. Soc. 1963, 85, 1597.

 ⁽¹²⁾ Walmig, C. & Am. Chem. Soc. 1906, 66, 465.
 (13) Kerr, J. A. Chem. Rev. 1966, 66, 465.
 (14) (a) McEwen, C. N.; Rudat, M. A. J. Am. Chem. Soc. 1979, 101, 6470. (b) Ibid. 1981, 103, 4343. (c) Ibid. 1981, 103, 4349. (d) Ibid. 1981, 103, 4355.

cycloheptyl peroxide because of insufficient volatility to give the required radical flux. Both d_0 and d_2 dicyclopentyl and dicyclohexyl peroxides were analyzed. In the case of 9 (n = 4), the major radicals trapped by TCNQ were nC_4H_9 and H with virtually no C_1 , C_2 , C_3 , or C_5 alkyl radicals.¹⁵ Radical 9 (n = 5) likewise gave mostly $n - C_5 H_{11}$. and H. radicals with only minor amounts of C1, C2, C3, C4, or C_6 radicals. When the starting material was 9 (n = 5), an oxygen-containing carbon-centered radical, isomeric with the ω -formylpentyl radical 4 (n = 5), was observed with an intensity equal to about 10% that of $n-C_5H_{11}$. No significant amount of the corresponding radical was observed starting with 9 (n = 4). A possible explanation is that the trapped oxygen-containing radical when n = 5 was the stabilized α -formyl radical 5 (n = 5) formed by intramolecular H-atom transfer of radical 4 (n = 5). Formation of 5 (n = 5) proceeds via a favorable 6-membered transition state. Formation of homologous 5 from 4 with n = 4 would require a much less favorable 5-membered transition state and was not observed. The energetics of gas phase intramolecular H atom transfer processes requiring 5- and 6-membered transition states have recently been discussed.^{14c} Significantly faster rearrangements involving 6-membered transition states have been noted

for both thermally and chemically activated radicals. With 9- d_2 as starting material, (n = 4), *n*-butyl radicals were trapped by TCNQ and contained at least 86% monodeuteration.¹⁶ Collision Induced Decomposition (CID) analysis of the trapped *n*-butyl radicals showed loss of C_3H_6D fragments consistent with a location of D in the methyl group of 8 (n = 4, R = D). Likewise, 9- d_2 (n = 5) gave rise to n-pentyl radicals containing at least 95% monodeuteration. CID analysis of the TCNQ-trapped n-pentyl radicals showed the presence of both 2-pentyl and 1-pentyl radicals, in agreement with results obtained previously for pentyl radicals generated from n-hexylamine.^{14b} The isomeric pentyl-d radicals contained D enrichment in the propyl and butyl portions. Precise analysis of the positions of D in the 1- and 2-pentyl radicals was not possible because of the degree of peak overlap of peaks differing by only one mass unit. The high level of deuterium enrichment found in *n*-butyl and isomeric pentyl radicals, generated from 4-d with n = 4 and 5, indicates that gas phase intramolecular H-atom transfer of ω -formyl radicals proceeding through both 6- and 7member transition states is quite favorable.

Experimental Section

Undeuterated and α, α' -dideuterated dicycloalkyl peroxides were prepared by reaction of KO₂ and the appropriate cycloalkyl methanesulfonate esters as recently reported.⁹ Characterization of each of the dicycloalkyl peroxides was based on attainment of correct m/e values by GC/MS analysis and by analysis of the major ketone (3) and alcohol (2) thermolysis products by LC, GC, and GC/MS.⁹

The percentages of deuterium enrichment in the peroxide- d_2 were established by GC/MS analyses. The complete regiospecificity of α, α' deuterium incorporation was based on GC/MS analyses of starting cycloalkyl- α -d methanesulfonate esters and precursor cycloalkanols- α -d used for syntheses.

Gas chromatography was carried out using a Varian Model 3700 instrument equipped with a flame ionization detector and a 25-M Carbowax 20M glass capillary column. GC/MS analyses were performed using a Varian Model 3700 gas chromatograph coupled to a VG Micromass Model 16F mass spectrometer. Vapor phase MS analyses were done using a VG ZAB-2F mass spectrometer.

Solution-Phase Thermolysis of α, α' -Dideuteriodicyclohexyl Peroxide [9- d_2 (n = 5)] in Dodecane. A solution containing 9- d_2 (0.058 g, 0.29 mmol) dissolved in 1.87 mL of dodecane was placed into a 10-mL glass tube equipped with a Teflon (Du Pont) fluorocarbon resin stopcock and was purged of air by bubbling with N₂ for 15 min. Analysis of the solution by GC/MS gave a parent peak of m/e 200 (calcd m/e for $C_{12}H_{10}D_2$ 200). The N₂-purged tube was sealed and was heated at 160 °C for 1 h. A GC/MS analysis of the product solution for low-boiling hydrocarbons revealed a major peak for pentane and a trace peak for butane. Comparison of peak intensities for $C_5H_{11}D$ (m/e 73) and C_5H_{12} (m/e 72) showed a ratio of 40/100, corresponding to 29% $C_5H_{11}D/71\%$ C_5H_{12} after correction of the $C_5H_{11}D$ peak intensity for 1.1% natural abundance ¹³C.

Vapor-Phase Thermolysis of α, α' -Dideuteriodicyclohexyl Peroxide 9- d_2 . A 10- μ L sample of neat 9- d_2 (n = 5) was injected into a 15-mL glass reservoir held at 110 °C from which it could escape through a glass capillary into the ion source of the mass spectrometer, which was maintained at 200 °C. A pressure of about 10⁻⁴ torr of TCNQ and about 0.3 torr of N₂ were also present in the ion source. The mass spectrum showed major ions corresponding to trapped C₃H₇, C₅H₁₀D, C₅H₁₁, and C₆H₁₀DO with relative intensities of 24:100:10:14. The calculated ratio of C₅H₁₀D·/C₅H₁₁, was 10:1.

Acknowledgment. We wish to thank W. B. Arters, T. S. Winant, R. G. McKay, and A. G. Bolinski for skilled experimental assistance.

Registry No. 1 (n = 4; R = H), 53578-06-6; 1 (n = 5; R = H), 3384-35-8; 1 (n = 6; R = H), 78939-49-8; 9 (n = 4; R = H), 55999-66-1; 9 (n = 5; R = H), 1758-61-8; 9 (n = 6; R = H), 86148-71-2; \cdot (CH₂)₄CHO, 78939-50-1; \cdot (CH₂)₅CHO, 59282-49-4; \cdot (CH₂)₆CHO, 78939-51-2; H, 1333-74-0.

Aerosol Direct Fluorination Syntheses: Alkyl Halides, Neopentyl Chloride and Bromide, Free Radicals vs. Carbocations

James L. Adcock,* William D. Evans, and Lilly Heller-Grossman

Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996

Received April 13, 1983

Aerosol direct fluorination of neopentyl chloride produces perfluoroneopentyl chloride in 74% yields. Analogous fluorination of neopentyl bromide produces perfluoroisopentane in 63% yield. Data are presented that support a carbocation rearrangement in the fluorination of neopentyl bromide. The carbocations are presumed to arise from disproportionation of neopentylbromine fluorides.

The direct fluorination of alkyl halides to perfluoroalkyl halides would provide a method of obtaining specific fluorocarbons in which the site for further reaction has been preselected prior to fluorination. the fluorination of chloroalkanes by metathesis using HF, F^- , or SbF₃ does not provide for prior selection of residual halogens although

⁽¹⁵⁾ Carbon-centered radicals were trapped with TCNQ and were characterized, free of neutral organic byproducts.

⁽¹⁶⁾ Some loss of deuterium enrichment in ω -formyl radicals from H-D exchange with H₂O on heated glass and metal surfaces is expected.